
Resource-efficient Object Detection by Sharing
Backbone CNNs
Werner Bailer and Hannes Fassold

DIGITAL – Institute for Information and Communication Technologies
JOANNEUM RESEARCH Forschungsgesellschaft mbH

Steyrergasse 17, 8010 Graz, Austria
Email: {firstname.lastname}@joanneum.at

Abstract—The detection of objects in image and video has
made huge progress in recent years due to the use of deep
convolutional neural networks (DNNs), with some network ar-
chitectures becoming de-facto standards. This paper addresses
the problem of sharing a backbone CNN for different tasks,
for example, to enable detection of additional classes when an
already trained network is available. When using multiple such
neural networks, sharing a backbone can save inference time and
memory consumption. We study sharing a common backbone
between neural networks trained for different tasks (logoness
and text block detection) based on Yolo v3. We provide results
on the impact of different lengths of the shared backbone on
performance and resource efficiency.

I. INTRODUCTION

The detection of objects in image and video has made huge
progress in recent years due to the use of deep convolutional
neural networks (DNNs). For several tasks, some network
architectures such as VGG [?], ResNet [?] or Darknet [?] have
become a de-facto standard. Those networks are adapted to
specific problems using transfer learning or used as part of a
larger architecture.

This paper addresses the problem of sharing a backbone
for different tasks, for example, to enable the detection of
additional classes when an already trained network is available.
Often, the need for specific classes arises at a later stage, and
there are benefits not to retrain the existing classifier with
additional classes: First, the training effort will be smaller than
for just retraining a classifier for all classes. Second, the per-
formance of the combined classifier might be lower, and third,
even if the overall performance does not decrease, the classifier
is likely to perform differently in some cases. This issue of
reproducibility and consistency of DNN-based classifiers has
for example been discussed [?]. When using multiple such
neural networks, sharing a backbone can save inference time
and memory consumption. The latter is especially important
when processing large images, e.g., 360◦ scenes [?].

We study sharing a common backbone network between
neural networks trained for different tasks, based on Yolo
v3 [?]. Using different lengths of the common backbone, and
retraining for the rest for the specific tasks, we provide results
showing the possible performance and resource gain trade-offs.

The rest of this paper is organized as follows. Section II
discusses related work. The approach for sharing the backbone

and performing partial retraining is described in Section III,
and Section IV presents the results.

II. RELATED WORK

There is some existing work on sharing base models, and
incremental neural network representations. The authors of [?]
aim at object detection across domain boundaries, but without
the need to include detectors specifically for each domain.
They propose a domain-attentive detector, and analyze for
this purpose the activations of object detectors on different
datasets. They conclude that the early layers are more relevant
for domain adaptation. In [?] an approach for merging two
trained networks by sharing weights is proposed, in order to
run multiple tasks efficiently. However, this approach requires
fine-tuning for all tasks, i.e., does not leave the base network
unmodified.

A recent paper [?] has analyzed the statistics of weights
in differences of models, obtained from retraining a model or
training multiple specializations of a base model using transfer
learning. The conclusion is that significantly better compres-
sion can be achieved due to the higher sparsity and lower
value ranges of weights. An approach for transfer learning
called fixed model reuse has been proposed [?], which can be
extended to be a shared base model for multiple applications,
enabling efficient incremental representations for services that
require models for multiple related tasks (e.g., different image
classification problems). An incremental approach to neural
network quantization has been proposed [?], which iterates
cycles performing weight partition, group-wise quantization
and re-training. The approach can be used to trade-off model
size and performance loss, thus creating models with increas-
ing size and performance, that benefit from being deployed
incrementally, also in order to reduce latency before the initial
model is available.

Domain adaptation (while staying with the same set of
classes) is not in scope of our work, which aims to add
detection capabilities for additional classes. We also aim to
maintain stability and reproducibility of the already supported
classes when adding additional ones.



Fig. 1. Relative differences of biases and weights for the logo model.

III. SHARED BACKBONE WITH PARTIAL RETRAINING

We study the problem of using a pretrained Yolo v3 classi-
fier on the MS COCO dataset1 [?], and two adapted versions
of the model. One is trained for text detection on the COCO-
Text v2 dataset2 and the other for logoness detection (i.e.,
detection of regions that contain a logo, without identifying a
particular logo instance) on the Logos in the Wild dataset [?].
Both networks follow the same architecture as the pretrained
model, but have only one output class. In addition, the shape
of the anchor boxes is different for the text detector, addressing
the more longitudinal nature of text areas. We trained the two
variants of the network end-to-end, starting from a network
pretrained on MS COCO.

We analyze the differences of biases and weights between
the pretrained model and the two refined variants. Layers that
have a different number of inputs or outputs (e.g., due to the
different number of classes) are ignored. The differences are
expressed as fractions of the base model. Figures 1 and 2 show
the result of this analysis. It is apparent that there are a few
layers with higher weight differences in the first few blocks of
convolutional layers, around layer 30, and that the differences
in terms of both weights and biases increase strongly after
layer 74. In the Yolo v3 architecture, this layer marks the
start of the last block of convolutional layers before the first
detection block (layer 82).

The distribution of differences of weights and biases for the
two models trained starting from MS COCO is similar. For
comparison, we also analyze the differences between Yolo v3
trained on MS COCO, and Yolo v3 trained on the OpenImages
v4 dataset [?]. The results are shown in Figure 3. Even though
this model is trained from scratch, the overall pattern of
differences is similar compared to the model trained on MS
COCO, with the mean differences higher than for the logo and

1http://cocodataset.org
2https://bgshih.github.io/cocotext/

Fig. 2. Relative differences of biases and weights for the text model.

Fig. 3. Relative differences of biases and weights for the OpenImages v4
model.

text models, and with significantly more and higher outliers
in the differences.

It is obvious that there are strong differences in the biases
and weights, in particular from layer 74 onward, and that these
layers are strongly influenced by the changed targets in the
detection layers. This is thus a natural point to choose the
part of the network before this layer as a common backbone.

As an initial experiment, we mixed the weights in the end-
to-end transferred model, using the ones from base model
trained on MS COCO up to layer 74, and after that using the
one from the specific model. This model performs very badly,
as the end-to-end model adapts already in earlier layers, so
that the weights in the later layers do not match.

We thus chose to partially retrain the model starting at layer
k (experiments have been performed for k = {40, 48, 64, 73},
see below), starting from the model pretrained on MS COCO.



As stated above, layer 74 seems to be a natural choice for
retraining after it, as the differences in weights and biases
increase strongly. As some performance loss can be expected,
performance could be regained by reducing k, i.e. trading of
resource savings and performance. However, in contrast to the
difference increase after layer 74, there is no such point in the
earlier layers of Yolo v3. Instead, the differences all follow
a similar pattern, so that the choice of k seems arbitrary.
However, we have always chosen k to be the last of a block
of convolutional layers.

For the practical implementation, we created a tool for
measuring the differences in weights and biases, determining
statistics, and concatenating networks. When using networks
for multiple tasks in inference, they should be combined in
a single network. We insert thus a routing layer after the
last layer of the network (i.e. layer 107 in Yolo v3), and
connect it to layer k. Then we replicate the rest of the network,
if needed with adjustments (e.g. different anchor boxes for
different detection tasks). For example, when combining the
base network capable of detecting the 80 MS COCO classes
with a text block detector, we obtain a network with 141
layers in total, and twice the detection blocks for three scales.
The implementation of the DarkForce framework3 has been
extended to handle multiple sets of detection heads, with
possibly a different number of classes for each of them.

IV. RESULTS

We evaluate the results by measuring the mean average
precision (MAP) on the validation sets of the respective data
sets (i.e., Logos in the Wild for logoness detection, COCO Text
v2 for text block detection). Figure 5 provides an overview of
the results. The results for k = 0 correspond to end-to-end
training, and represent the anchor to compare against. The
sharing of the backbone network results in some performance
loss, rather moderate for logoness detection (just below 7%),
and more significant for text block detection (around 16%).
Moving k to 40 roughly halves the performance loss in both
cases.

In order to further analyze why the performance loss cannot
be eliminated or further reduced by moving k to earlier layers,
we look again at the differences of weights and biases. Figure 4
shows these differences for the logoness detection with k =
40. It is obvious that the differences of the layers between
60 and 80 are quite small, i.e., most of the retraining has
affected the earlier layers. This shows that some adaptation to
the new problem takes place in the early layers, and can only
be partly compensated in a later stage. This puts a limit to the
performance that can be achieved with the shared backbone,
when no information from earlier layers is adapted.

Table I provides and overview of the fraction of weights
and FLOPs that are saved when the backbone is shared up to
a certain layer k. While the number of weights impacts the
memory consumption of the model, the number of FLOPs
impacts the computational effort. It is apparent, that the

3https://github.com/pjreddie/darknet

Layer n◦ (k) frac. weights frac. FLOPs
73 0.655 0.744
64 0.401 0.663
48 0.156 0.505
40 0.092 0.424

TABLE I
RESOURCE REDUCTION BY REUSING BACKBONE UP TO A CERTAIN LAYER.

Fig. 4. Relative differences of biases and weights for the logo model with
shared backbone, retrained after layer 40.

number of weights in the earlier layers of the model is lower,
as the convolutional layers have relatively few parameters.
Conversely, as these layers work on still larger data, they
are particularly computationally heavy. We can see from the
results, that sharing the backbone up to layer 74 saves 2/3
of the memory and 3/4 of the computational effort of every
additional model sharing the backbone network.

V. CONCLUSION

In this work we have analyzed sharing a backbone network
for different visual object detection tasks, based on the Yolo
v3 architecture. Results on standard data sets for logo detec-
tion and text block detection have been provided. We have
studied the impact of different lengths of the shared backbone
on performance and resource efficiency. At a performance
decrease of about 3.5% for logoness and about 9% for text
block detection, 42% of the floating point operations of each
additional detector are saved. If one can accept a twice as large
performance degradation, 2/3 of the memory and 3/4 of the
floating operations can be saved.

In future work, this analysis will be extended to other visual
analysis tasks, that can share the same backbone. One open
question is still how to determine the best choice of the length
of the shared backbone. It may depend on the specific tasks,
and as our results show, it cannot be directly derived from the
weight and bias differences of the fully trained networks for
different tasks.



Fig. 5. Detection results (MAP @ 0.50 IoU) for logo and text detection with
different number of shared layers (i.e., retrained starting at layer k).

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme, under
grant agreements n◦ 761802 MARCONI (“Multimedia and
Augmented Radio Creation: Online, iNteractive, Individual”)
and n◦ 761934, Hyper360 (“Enriching 360 media with 3D
storytelling and personalisation elements”).

The authors would like to thank Ridouane Ghermi for his
support with training the models used in the experiments.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[3] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
CoRR, vol. abs/1804.02767, 2018. [Online]. Available: http://arxiv.org/
abs/1804.02767

[4] W. Bailer, “On the traceability of results from deep learning-based
cloud services,” in Proceedings of the 24th International Conference
MultiMedia Modeling, Bangkok, TH, 2018.

[5] H. Fassold, “Automatic camera path generation from 360◦ video,” in
14th International Symposium on Visual Computing, 2019.

[6] X. Wang, Z. Cai, D. Gao, and N. Vasconcelos, “Towards universal object
detection by domain attention,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 7289–7298.

[7] Y.-M. Chou, Y.-M. Chan, J.-H. Lee, C.-Y. Chiu, and C.-S. Chen,
“Unifying and merging well-trained deep neural networks for inference
stage,” in Proceedings of the 27th International Joint Conference on
Artificial Intelligence. AAAI Press, 2018, pp. 2049–2056.

[8] Z. Chen, S. Wang, D. O. Wu, T. Huang, and L.-Y. Duan, “From
data to knowledge: Deep learning model compression, transmission and
communication,” in 2018 ACM Multimedia Conference on Multimedia
Conference. ACM, 2018, pp. 1625–1633.

[9] Y. Yang, D.-C. Zhan, Y. Fan, Y. Jiang, and Z.-H. Zhou, “Deep learning
for fixed model reuse,” in Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

[10] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless cnns with low-precision weights,” arXiv
preprint arXiv:1702.03044, 2017.

[11] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,
P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO:
common objects in context,” CoRR, vol. abs/1405.0312, 2014.

[12] A. Tüzkö, C. Herrmann, D. Manger, and J. Beyerer, “Open Set Logo
Detection and Retrieval,” in Proceedings of the 13th International
Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications: VISAPP, 2018.

[13] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset,
S. Kamali, S. Popov, M. Malloci, T. Duerig, and V. Ferrari, “The open
images dataset v4: Unified image classification, object detection, and
visual relationship detection at scale,” arXiv:1811.00982, 2018.


